Amplitude ambiguities in second-harmonic generation frequency-resolved optical gating.

نویسندگان

  • Balakishore Yellampalle
  • Kiyong Kim
  • Antoniette J Taylor
چکیده

We construct field shapes with distinct amplitude profiles that have nearly identical second-harmonic generation frequency-resolved optical gating (SHG FROG) traces. Although such fields are not true mathematical ambiguities, they result in experimentally indistinguishable FROG traces. These fields are neither time-reversed copies nor pulselets with a mere relative phase difference, which are well known nontrivial ambiguities for SHG FROG. We also show that for certain example fields, second-order interferometric autocorrelation is more sensitive to the pulse shape than is SHG FROG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 microm.

We retrieve intensity and phase profiles of 280 fs, 50 MHz optical pulses with 124 aJ coupled pulse energy (960 photons) by second-harmonic generation (SHG) frequency-resolved optical gating, using aperiodically poled LiNbO3 waveguides. The strong nonlinear interaction that is due to confinement within the micrometer-sized waveguide structure and the linearly chirped poling period contribute, r...

متن کامل

Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives.

Ultrashort-pulse lasers are now commonly used for multiphoton microscopy, and optimizing the performance of such systems requires careful characterization of the pulses at the tight focus of the microscope objective. We solve this problem by use of a collinear geometry in frequency-resolved optical gating that uses type II second-harmonic generation and that allows the full N.A. of the microsco...

متن کامل

Measuring several-cycle 1.5-m pulses using frequency-resolved optical gating.

We demonstrate frequency-resolved optical gating (FROG) for measuring the full intensity and phase of several-optical-cycle 1.5-m pulses generated from a Kerr-lens mode-locked (KLM) Cr4+:YAG laser. This involves the use of an angle-dithered second-harmonic-generation crystal to achieve the full pulse bandwidth despite the use of a relatively thick nonlinear crystal.

متن کامل

Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation.

We demonstrate what is to our knowledge the first frequency-resolved optical gating (FROG) technique to measure ultrashort pulses from an unamplified Ti:sapphire laser oscillator without direction-of-time ambiguity. This technique utilizes surface third-harmonic generation as the nonlinear-optical effect and, surprisingly, is the most sensitive third-order FROG geometry yet.

متن کامل

Background-free collinear autocorrelation and frequency-resolved optical gating using mode multiplexing and demultiplexing in aperiodically poled lithium niobate waveguides.

We use mode multiplexing and demultiplexing in apodized aperiodically poled lithium niobate waveguides to enable characterization of picosecond optical pulses in a collinear but background-free way using autocorrelation and second-harmonic frequency-resolved optical gating.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 34 17  شماره 

صفحات  -

تاریخ انتشار 2007